Written Exam at the Department of Economics winter 2019-20

Financial Econometrics A

Final Exam

February 17, 2020

(3-hour closed book exam)

Abstract

Answers only in English.

This exam question consists of 6 pages in total

Falling ill during the exam

If you fall ill during an examination at Peter Bangs Vej, you must:

- contact an invigilator who will show you how to register and submit a blank exam paper.
- leave the examination.
- contact your GP and submit a medical report to the Faculty of Social Sciences no later than five (5) days from the date of the exam.

Be careful not to cheat at exams!

You cheat at an exam, if during the exam, you:

- Make use of exam aids that are not allowed
- Communicate with or otherwise receive help from other people
- Copy other people's texts without making use of quotation marks and source referencing, so that it may appear to be your own text
- Use the ideas or thoughts of others without making use of source referencing, so it may appear to be your own idea or your thoughts
- Or if you otherwise violate the rules that apply to the exam

Financial Econometrics A

February 17, 2020

Please note there is a total of $\mathbf{1 0}$ questions that you should provide answers to. That is, $\mathbf{5}$ questions under Question A, and $\mathbf{5}$ under Question B.

Question A:

Consider the model for $x_{t} \in \mathbb{R}$ (with $t=1,2, \ldots, T$) given by

$$
x_{t}=\mu+\varepsilon_{t}, \quad \varepsilon_{t}=\sigma_{t} z_{t},
$$

with z_{t} i.i.d.N $(0,1), x_{0}=0$ and

$$
\sigma_{t}^{2}=\omega+\alpha x_{t-1}^{2} .
$$

The parameters satisfy $\mu \in \mathbb{R}, \omega>0$ and $\alpha \geq 0$.
Question A.1: Derive a condition under which x_{t} is weakly mixing with $E x_{t}^{2}<\infty$.

Question A.2: With $\theta=(\mu, \omega, \alpha)^{\prime}$ the likelihood function is given by

$$
L(\theta)=-\frac{1}{2 T} \sum_{t=1}^{T}\left(\log \sigma_{t}^{2}(\theta)+\frac{\left(x_{t}-\mu\right)^{2}}{\sigma_{t}^{2}(\theta)}\right)
$$

with $\sigma_{t}^{2}(\theta)=\omega+\alpha x_{t-1}^{2}$. Show that if $\alpha_{0}<1$, then with $\theta_{0}=\left(\mu_{0}, \omega_{0}, \alpha_{0}\right)^{\prime}$ the true parameter value,

$$
\sqrt{T} \partial L\left(\theta_{0}\right) / \partial \mu \xrightarrow{D} N(0, \xi) \quad \xi=E\left(\frac{x_{t}-\mu_{0}}{\omega_{0}+\alpha_{0} x_{t-1}^{2}}\right)^{2}
$$

Question A.3: Show that if x_{t} is weakly mixing with $\alpha_{0}>0$, then with $\theta_{0}=\left(\mu_{0}, \omega_{0}, \alpha_{0}\right)^{\prime}$ the true parameter value,

$$
\sqrt{T} \partial L\left(\theta_{0}\right) / \partial \alpha \xrightarrow{D} N(0, \beta) \quad \beta=\frac{1}{2} E\left(\frac{x_{t-1}^{2}}{\omega_{0}+\alpha_{0} x_{t-1}^{2}}\right)^{2} .
$$

Question A.4: We conclude that if $0<\alpha_{0}<1$ then asymptotic normality holds for $\hat{\theta}$. Argure that the limiting distribution of the LR statistic for the hypothesis that $\mu=0$ is χ^{2}.

Question A.5: Now consider testing the hypothesis that $\alpha=0$. In this case the asymptotic distribution of the LR statistic is $" \frac{1}{2} \chi^{2}$ ". Explain why and explain how this is related to Questions A. 2 and A.3.

Question B:

Suppose that the logarithm of the price of a share of stock is given by

$$
\begin{equation*}
p(t)=p(0)+\mu t+\sigma W(t), \quad t \in[0, T], \tag{B.1}
\end{equation*}
$$

where $p(0) \in \mathbb{R}$ is some fixed initial value, $\mu \in \mathbb{R}$ and $\sigma>0$ are constants, and $W(t)$ is a Brownian motion.

Recall here that the Brownian motion $W(t)$ has the properties

1. $W(0)=0$.
2. W has independent increments, i.e. if $0 \leq r<s \leq t<u$, then

$$
W(u)-W(t) \text { and } W(s)-W(r)
$$

are independent.
3. The increments are normally distributed, i.e.

$$
W(t)-W(s) \sim N(0, t-s)
$$

for all $0 \leq s \leq t$.

Suppose that we have observed the price $p(t)$ at $n+1$ equidistant points

$$
0=t_{0}<t_{1}<\ldots<t_{n}=T
$$

with

$$
t_{i}=\frac{i}{n} T, \quad i=0, \ldots, n
$$

Based on these points we obtain n log-returns given by

$$
r\left(t_{i}\right)=p\left(t_{i}\right)-p\left(t_{i-1}\right), \quad i=1, \ldots, n .
$$

Question B.1: Argue that $r\left(t_{i}\right)$ is normally distributed, i.e. show that

$$
r\left(t_{i}\right) \sim N\left(\mu \frac{T}{n}, \sigma^{2} \frac{T}{n}\right) .
$$

Show that

$$
\operatorname{cov}\left(r\left(t_{i}\right), r\left(t_{i-1}\right)\right)=0
$$

Question B.2: We now seek to estimate the model parameters (μ, σ^{2}) based on maximum likelihood. Given the n log-returns, the log-likelihood function is (up to a constant and a scaling factor)

$$
L_{n}\left(\mu, \sigma^{2}\right)=\sum_{i=1}^{n}\left\{-\log \left(\sigma^{2} \frac{T}{n}\right)-\frac{\left[r\left(t_{i}\right)-\mu \frac{T}{n}\right]^{2}}{\sigma^{2} \frac{T}{n}}\right\} .
$$

Let $\hat{\mu}$ denote the maximum likelihood estimator of μ.
Show that

$$
\hat{\mu}=\frac{1}{T} \sum_{i=1}^{n} r\left(t_{i}\right)=\frac{1}{T}[p(T)-p(0)] .
$$

Argue that the sampling frequency of the log-returns over the interval $[0, T]$ does not have any influence on the estimate of μ.

Question B.3: Assume now that $T=1$, such that we have n observations of the log-returns over the time interval $[0,1]$, which you may think of as the time interval over one trading day. Then the maximum likelihood estimator for σ^{2} is given by

$$
\hat{\sigma}^{2}=\sum_{i=1}^{n}\left[r\left(t_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} r\left(t_{i}\right)\right]^{2} .
$$

Use that $r\left(t_{i}\right)=\frac{\mu}{n}+\frac{\sigma}{\sqrt{n}} z_{i}$, with $z_{i} \sim$ i.i.d. $N(0,1)$ in order to show that

$$
\frac{1}{n} \sum_{i=1}^{n} r\left(t_{i}\right) \xrightarrow{p} 0 \quad \text { as } n \rightarrow \infty .
$$

Explain briefly how $\hat{\sigma}^{2}$ is related to the Realized Volatility.
Question B.4: Assume that T is some positive integer $(T \in \mathbb{N})$, and that we have $n=T$ observations of the returns, that is we have a sample $(r(t))_{t=1, \ldots T}$ with $r(t)=p(t)-p(t-1)$. Let

$$
\hat{\gamma}_{T}=\frac{1}{T} \sum_{t=1}^{T} r(t)
$$

and argue that as $T \rightarrow \infty$,

$$
\sqrt{T}\left(\hat{\gamma}_{T}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right) .
$$

Question B.5: The following figure shows the daily log-returns of the S\&P 500 index for the period January 4, 2010 to September 17, 2015.

Discuss briefly whether the model in (B.1) is a reasonable model for the daily log returns of the S\&P 500 index.

