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Financial Econometrics A
February 17, 2020

Please note there is a total of 10 questions that you should provide answers
to. That is, 5 questions under Question A, and 5 under Question B.

Question A:

Consider the model for xt ∈ R (with t = 1, 2, ..., T ) given by

xt = µ+ εt, εt = σtzt,

with zt i.i.d.N(0, 1), x0 = 0 and

σ2t = ω + αx2t−1.

The parameters satisfy µ ∈ R, ω > 0 and α ≥ 0.

Question A.1: Derive a condition under which xt is weakly mixing with
Ex2t <∞.

Question A.2: With θ = (µ, ω, α)′ the likelihood function is given by

L (θ) = − 1

2T

T∑
t=1

(
log σ2t (θ) +

(xt − µ)2

σ2t (θ)

)
,

with σ2t (θ) = ω + αx2t−1. Show that if α0 < 1, then with θ0 = (µ0, ω0, α0)
′

the true parameter value,

√
T∂L (θ0) /∂µ

D→ N (0, ξ) ξ = E

(
xt − µ0

ω0 + α0x2t−1

)2
.

Question A.3: Show that if xt is weakly mixing with α0 > 0, then with
θ0 = (µ0, ω0, α0)

′ the true parameter value,

√
T∂L (θ0) /∂α

D→ N (0, β) β =
1

2
E

(
x2t−1

ω0 + α0x2t−1

)2
.
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Question A.4: We conclude that if 0 < α0 < 1 then asymptotic normality
holds for θ̂. Argure that the limiting distribution of the LR statistic for the
hypothesis that µ = 0 is χ2.

Question A.5: Now consider testing the hypothesis that α = 0. In this
case the asymptotic distribution of the LR statistic is "1

2
χ2". Explain why -

and explain how this is related to Questions A.2 and A.3.
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Question B:

Suppose that the logarithm of the price of a share of stock is given by

p(t) = p(0) + µt+ σW (t), t ∈ [0, T ], (B.1)

where p(0) ∈ R is some fixed initial value, µ ∈ R and σ > 0 are constants,
and W (t) is a Brownian motion.

Recall here that the Brownian motion W (t) has the properties

1. W (0) = 0.

2. W has independent increments, i.e. if 0 ≤ r < s ≤ t < u, then

W (u)−W (t) and W (s)−W (r)

are independent.

3. The increments are normally distributed, i.e.

W (t)−W (s) ∼ N(0, t− s)

for all 0 ≤ s ≤ t.

Suppose that we have observed the price p(t) at n+ 1 equidistant points

0 = t0 < t1 < . . . < tn = T,

with
ti =

i

n
T, i = 0, ..., n.

Based on these points we obtain n log-returns given by

r(ti) = p(ti)− p(ti−1), i = 1, ..., n.

Question B.1: Argue that r(ti) is normally distributed, i.e. show that

r(ti) ∼ N

(
µ
T

n
, σ2

T

n

)
.

Show that
cov(r(ti), r(ti−1)) = 0.
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Question B.2: We now seek to estimate the model parameters (µ, σ2) based
on maximum likelihood. Given the n log-returns, the log-likelihood function
is (up to a constant and a scaling factor)

Ln(µ, σ
2) =

n∑
i=1

{
− log(σ2T

n
)−

[
r(ti)− µTn

]2
σ2 T

n

}
.

Let µ̂ denote the maximum likelihood estimator of µ.
Show that

µ̂ =
1

T

n∑
i=1

r(ti) =
1

T
[p(T )− p(0)] .

Argue that the sampling frequency of the log-returns over the interval [0, T ]
does not have any influence on the estimate of µ.

Question B.3: Assume now that T = 1, such that we have n observations
of the log-returns over the time interval [0, 1], which you may think of as the
time interval over one trading day. Then the maximum likelihood estimator
for σ2 is given by

σ̂2 =
n∑
i=1

[
r(ti)−

1

n

n∑
i=1

r(ti)

]2
.

Use that r(ti) =
µ
n
+ σ√

n
zi, with zi ∼ i.i.d.N(0, 1) in order to show that

1

n

n∑
i=1

r(ti)
p→ 0 as n→∞.

Explain briefly how σ̂2 is related to the Realized Volatility.

Question B.4: Assume that T is some positive integer (T ∈ N), and that we
have n = T observations of the returns, that is we have a sample (r(t))t=1,...T
with r(t) = p(t)− p(t− 1). Let

γ̂T =
1

T

T∑
t=1

r(t),

and argue that as T →∞,
√
T (γ̂T − µ)

d→ N(0, σ2).
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Question B.5: The following figure shows the daily log-returns of the S&P
500 index for the period January 4, 2010 to September 17, 2015.

SP500 ­ Log­Return
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Discuss briefly whether the model in (B.1) is a reasonable model for the daily
log returns of the S&P 500 index.
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